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INTRODUCTION: Fingerprint studies use
pattern information to separate human and
natural influences on climate. Most fingerprint
research relies on patterns of climate change
that are averaged over years or decades. Few
studies probe shorter time scales. We consider
here whether human influences are identifia-
ble in the changing seasonal cycle. We focus
on Earth’s troposphere, which extends from
the surface to roughly 16 km at the tropics and
13 km at the poles. Our interest is in TAC, the
geographical pattern of the amplitude of the
annual cycle of tropospheric temperature. In-

formation on how TAC has changed over time
is available from satellite retrievals and from
large multimodel ensembles of simulations.

RATIONALE: At least three lines of evidence
suggest that human activities have affected the
seasonal cycle. First, there are seasonal signals
in certain human-caused external forcings, such
as stratospheric ozone depletion and particu-
late pollution. Second, there is seasonality in
some of the climate feedbacks triggered by
external forcings. Third, there are widespread
signals of seasonal changes in the distributions

and abundances of plant and animal species.
These biological signals are in part mediated
by seasonal climate changes arising from global
warming. All three lines of evidence provide
scientific justification for performing finger-
print studies with the seasonal cycle.

RESULTS: The simulated response of the sea-
sonal cycle to historical changes in human and
natural factors has prominent mid-latitude in-
creases in the amplitude of TAC. These features
arise from larger mid-latitude warming in the
summer hemisphere, which appears to be partly
attributable to continental drying. Because of
land-ocean differences in heat capacity and

hemispheric asymmetry in
land fraction, mid-latitude
increases in TAC are greater
in theNorthernHemisphere
than in the Southern Hemi-
sphere. Qualitatively sim-
ilar large-scale patterns of

annual cycle change occur in satellite tropo-
spheric temperature data.
We applied a standard fingerprint method

to determine (i) whether the pattern similarity
between the model “human influence” finger-
print and satellite temperature data increases
with time, and (ii) whether such an increase is
significant relative to random changes in simi-
larity between the fingerprint and patterns of
natural internal variability. This method yields
signal-to-noise (S/N) ratios as a function of
increasing satellite record length. Fingerprint
detection occurs when S/N exceeds and re-
mains above the 1% significance threshold.
We find that the model fingerprint of ex-

ternally forced seasonal cycle changes is iden-
tifiable with high statistical confidence in five
out of six satellite temperature datasets. In
these five datasets, S/N ratios for the 38-year
satellite record vary from 2.7 to 5.8. Our pos-
itive fingerprint detection results are un-
affected by the removal of all global mean
information and by the exclusion of sea ice
regions. On time scales for which meaningful
tests are possible (one to two decades), there
is no evidence that S/N ratios are spuriously
inflated by a systematic model underestimate
of the amplitude of observed tropospheric tem-
perature variability.

CONCLUSION: Our results suggest that at-
tribution studies with the seasonal cycle of
tropospheric temperature provide powerful
and novel evidence for a statistically signif-
icant human effect on Earth’s climate. We hope
that this finding will stimulate more detailed
exploration of the seasonal signals caused by
anthropogenic forcing.▪
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Trends in the amplitude of the annual cycle of tropospheric temperature.Trends are
calculated over 1979 to 2016 and are averages from a large multimodel ensemble of historical
simulations. The most prominent features are pronounced mid-latitude increases in annual
cycle amplitude (shown in red) in both hemispheres. Similar mid-latitude increases occur in
satellite temperature data. Trends are superimposed on NASA’s “blue marble” image.
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We provide scientific evidence that a human-caused signal in the seasonal cycle of
tropospheric temperature has emerged from the background noise of natural variability.
Satellite data and the anthropogenic “fingerprint” predicted by climate models show
common large-scale changes in geographical patterns of seasonal cycle amplitude. These
common features include increases in amplitude at mid-latitudes in both hemispheres,
amplitude decreases at high latitudes in the Southern Hemisphere, and small changes in
the tropics. Simple physical mechanisms explain these features. The model fingerprint of
seasonal cycle changes is identifiable with high statistical confidence in five out of six
satellite temperature datasets. Our results suggest that attribution studies with the
changing seasonal cycle provide powerful evidence for a significant human effect on
Earth’s climate.

E
arth’s climate is simultaneously affected
by different external and internal factors.
Examples of external influences are natural
changes in solar irradiance and human-
caused increases in atmospheric concen-

trations of greenhouse gases. Internal influences
include a wide range of quasi-periodic natural
cycles, such as the El Niño–Southern Oscillation
and the Interdecadal Pacific Oscillation (IPO).
Variations in these and many other internal and
external factors have driven changes in historical
climate.
To estimate the relative sizes of human and

natural influences, analysts must separate the
climate signals of multiple external factors from
the noise of internal natural variability. Separa-
tion of signals and noise is a mature field of
scientific inquiry, with long-standing recogni-
tion that each mode of variability and each ex-
ternal influence has a unique climatic signature
(1). These signatures aremanifest more clearly in
spatial or spatiotemporal patterns than in global
averages (2). Such patterns are often referred to
as “fingerprints” (3).
Since the inception of climate fingerprint

research in the late 1970s, scientists have used
pattern recognition methods to detect unusually
large changes in climate and to attribute these

changes to different external influences. Initial
studies concentrated on surface and atmospheric
temperature (4–6). Subsequent fingerprint re-
search considered changes in a wide range of
variables, including ocean heat content (7, 8),
the hydrological cycle (9–13), atmospheric circu-
lation (14, 15), sea ice (16), and the behavior of
extreme events (17, 18). This body of work pro-
vides strong scientific evidence for a discernible
human influence on global climate (19–22).
Most fingerprint studies rely on annual or

decadal averages (5, 23) or attempt to under-
stand the causes of climate change during indi-
vidual seasons (4, 24). Few studies have explored
whether human influences are identifiable in
patterns of climate change over the seasonal
cycle (16, 25–27). Multiple lines of evidence sug-
gest that such influences exist (28, 29). First,
seasonal signals occur in many external drivers
of climate change, including stratospheric ozone
depletion, sulfate pollution, and soot aerosols
produced by biomass burning (30, 31). Second,
there is seasonality in certain climate feedback
mechanisms (32–35). Third, numerous scientific
studies have detected significant seasonal
changes in the biological world (36, 37). These
biological signals are likely to be mediated (at
least in part) by seasonal changes in climate.
It is therefore of interest to see whether we

can identify a fingerprint of human influences
on the seasonal cycle. To address this question,
we use TAC(x,t), the geographical pattern of the
amplitude of the annual cycle of tropospheric
temperature. This pattern provides information
on the differences (at grid point x and year t) in
tropospheric temperature between the warmest
and coldest months of the year. We compare
TAC(x,t) in satellite data and in large multimodel
ensembles of simulations. We also update an

analysis of TAM(x,t), the geographical pattern of
annual mean changes in tropospheric temper-
ature (38). This allows us to contrast the relative
detectability of externally driven temperature
signals in the annual mean and the annual cycle.
A number of previous studies have compared

the consistency between simulated and observed
changes in the phase and amplitude of surface
temperature, and have attempted to understand
the contributions these changes receive from in-
ternal variability and external forcing (26, 39–43).
To date, however, no formal fingerprint study has
been performed with the amplitude of the annual
cycle of tropospheric temperature. Unlike surface
temperature datasets, satellite measurements of
tropospheric temperature have near-global cover-
age and no gaps in time. This is advantageous for
fingerprint studies.

Satellite and model data

The satellite temperature data analyzed here are
measurements of the microwave emissions from
oxygen molecules. These emissions are propor-
tional to the temperature of broad atmospheric
layers. The measurements of primary interest
in this study are the temperatures of the mid- to
upper troposphere (TMT) and of the lower tro-
posphere (TLT). TMT receives a contribution
from stratospheric cooling, which hampers as-
sessment of the warming of the troposphere.
We use a standard regression-based approach to
correct TMT for stratospheric influence (44, 45).
This correctionmethod requires satellite informa-
tion on the temperature of the lower stratosphere
(TLS), which we also discuss briefly. In the fol-
lowing, TMT denotes model and satellite data
from which stratospheric influence has been
removed (46).
Satellite atmospheric temperature data with

near-global coverage were available from three
research groups: Remote Sensing Systems (RSS),
the NOAA Center for Satellite Applications and
Research (STAR), and the University of Alabama
at Huntsville (UAH) (47–49). Use of information
from multiple groups allows us to assess the
sensitivity of anthropogenic fingerprint identi-
fication to current observational uncertainties.
Because all three research groups provide both
older and newer dataset versions, we can also
evaluate the sensitivity of our fingerprint results
to changes over time in the data-processing de-
cisions made by each group. These decisions are
necessary in order to correct for nonclimatic
artifacts in the satellite data.
Artifacts arise from factors such as orbital

decay (50) and orbital drift (51). Orbital changes
affect the measurements of microwave emis-
sions, primarily because of gradual shifts in the
time of day at which measurements are made.
Adjustments for shifts in measurement time
are large and involve many subjective choices
(47–49, 51–56). Additional adjustments to the
raw data are required to account for drifts in the
onboard calibration of the microwave measure-
ments (49, 55, 57, 58) and for the transition in the
late 1990s between earlier and more advanced
versions of the microwave sounders (47). In the
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case of the UAH TMT data, there is evidence
that this transition has not been adequately
accounted for, resulting in abrupt, nonclimatic
changes in the amplitude of the annual cycle of
TMT (see below).
To facilitate comparisonwith observations, we

calculated “synthetic” satellite temperatures (38)
using different types of model simulations. We
obtained information on internal climate vari-
ability from pre-industrial control runs with no
year-to-year changes in external influences. Esti-
mates of the response to combined changes in
human and natural external factors were derived
from simulations of historical climate (HIST)
and 21st-century climate. The latter experiments
assume evolution of greenhouse gases, particulate
pollution, and other external influences under

Representative Concentration Pathway 8.5
(RCP8.5) (59). Splicing of the HIST and RCP8.5
simulations (HIST+8.5) allows comparison of
simulations and observations over 38 complete
years of satellite record (1979 to 2016). We also
analyze integrations with historical changes in
anthropogenic external influences only (ANTHRO).
All simulations were performed under phase 5
of the Coupled Model Intercomparison Program
(CMIP5) (60).

Climatological annual mean
and annual cycle

We first examine whether the HIST+8.5 simu-
lations successfully capture key features of the
observed climatological patterns of TMT, both
for the annual mean and the annual cycle.

Reliable representation of these patterns enhances
confidence in the credibility of our fingerprint
results.
TMT samples temperature changes over an

atmospheric layer extending from the surface to
roughly 16 km in the tropics and 13 km at the
poles (53). Despite the large vertical extent of this
layer, TMT retains an imprint of land-versus-
ocean differences, which is clearly evident in the
tropics (Fig. 1, left column). This land-ocean im-
print is primarily related to the ocean’s greater
heat capacity. Because there are no large con-
tinental land masses at mid-latitudes in the
Southern Hemisphere, TMT is more zonally uni-
form between 40° and 70°S than between 40°
and 70°N. These features of the observed mean
state are well represented in the multimodel
average.
The climatological annual cycle of TMT also

reveals the influence of land-ocean differences
(Fig. 1, right column). In the Northern Hemi-
sphere, the largest differences between the
warmest and coldest months occur over the
eastern margin of Eurasia. The annual cycle
amplitude near western continental margins
is reduced by eastward advection of warmer
oceanic air masses during winter (39, 42) and
cooler oceanic air masses in summer. Because
of the hemispheric asymmetry in land fraction,
annual cycle amplitudes at mid-latitudes are
smaller in the Southern Hemisphere (42). In
the deep tropics, where there is little seasonal
variation in incoming solar radiation, the annual
cycle in TMT is less than 1°C. As in the case of the
annual mean, the multimodel average replicates
these basic features of the observed climatological
annual cycle.
The seasonal change in TMT over each indi-

vidual year has annual and semiannual compo-
nents. CMIP5 models successfully reproduce
large-scale features of the observed partitioning
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Fig. 1. Climatological annual mean (left
column) and annual cycle (right column) of
the temperature of the mid- to upper
troposphere (TMT). (A to F) Results from the
latest versions of the RSS, STAR, and UAH
satellite datasets. (G and H) Multimodel average
of synthetic TMT data from simulations with
combined anthropogenic and natural external
forcing (HIST+8.5). Simulations were performed
with 37 different CMIP5 models. TMT is corrected
for the influence of stratospheric cooling.
Climatologies were calculated over the 38-year
period from 1979 to 2016 and are displayed on a
common 5° × 5° latitude/longitude grid. At each
grid point and for each year, the annual cycle
is the amplitude of the first harmonic of the
12 monthly mean values of corrected TMT. In the
tropics, climatological annual mean TMT in
UAH is more zonally symmetric than in either
RSS or STAR. Differences between the three sets
of observational results are noticeably smaller
for the climatological pattern of the annual cycle
than for the annual mean.
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between these components. In the extratropics
and polar regions, incoming solar radiation is
dominated by the annual cycle, which drives the
large annual cycle in TMT (fig. S1). The semi-
annual cycle in TMT is largest close to the equator,
where there is a double peak in incoming solar
radiation over each year. Small-scale discrepan-
cies between the models and observations occur
in the equatorial Pacific, Atlantic, and Indonesian
regions, where the semiannual cycle explains less
seasonal variance in the multimodel average than
in satellite data. These regional discrepancies are
evident inmost individual CMIP5models (fig. S2).
Their causes are unclear.

Geographical trend patterns

Next, we analyze geographical patterns of trends
in the annual mean and annual cycle of TMT.
Consider the observed annual mean trends first
(Fig. 2, left column). Satellite TMT data show
large-scale troposphericwarming over the period
1979 to 2016 (47, 56, 61, 62). Annualmean cooling
is restricted to small portions of the troposphere
poleward of 60°S. Other common features of the
observations are Arctic amplification of warming
(62–64), secondary warming maxima between
30° and 40°N and in the Southern Hemisphere
subtropics, and reduced warming near the
Aleutian and Icelandic Lows.
The multimodel average captures some but

not all of these features. As in the satellite data,
there is global-scale tropospheric warming, with
greater warming in the Northern Hemisphere.
Unlike the observations, however, the multi-
model average has no high-latitude cooling in
the Southern Hemisphere. Individual models
yield a large range of negative and positive TMT
trends in this region (fig. S3). This range is due
to multiple factors. Examples include model per-
formance in representing stratospheric ozone
changes over Antarctica (31, 38, 65, 66) and in
capturing changes in circulation and upwelling
in the Southern Ocean (64, 67).
Model-versus-observed trend differences are

also partly due to internal variability (62, 68).
The model results in Fig. 2 are averages over
individual HIST+8.5 realizations (eachwith their
own random sequence of internal climate varia-
bility) and over individual models. Averaging
reduces the size of simulated internal climate
variability, yielding a smoother estimate of the
tropospheric temperature response to external
forcing. In the real world, only one sequence of
internal variability is overlaid on the TMT re-
sponse to external forcing. We therefore expect
observed trend patterns to be noisier. This is
particularly noticeable in mid-latitude TAC(x,t)
trends, where satellite data show wave-train
features and multimodel average changes are
more zonal. Individual models are capable of
replicating such wave-train features (fig. S4).
Considerable scientific attention has been

devoted to the tropical troposphere, where
simulated warming is greater than observed
(47, 53, 56, 62, 69, 70). Possible reasons for
overestimated tropical warming include model
errors in climate sensitivity (71), different phas-

ing of natural internal variability in the model
runs relative to the real world (72–77), and re-
sidual errors in the satellite data (47, 78). Scien-
tific attention has also focused on forcing errors
in the HIST+8.5 simulations, as well as on the
omission (and/or inaccurate representation)
of certain external cooling influences that af-
fected observed climate in the early 21st century
(65, 77, 79–84). The claim that overestimation of
warming is solely due to a large error in climate
model sensitivity (71) has been tested elsewhere
and is not credible (85, 86).
Trends in the amplitude of the annual cycle of

TMT are characterized by a number of large-
scale features that are common to the satellite
datasets and the HIST+8.5 multimodel average
(Fig. 2, right column). These features include
amplitude increases in mid-latitudes of both
hemispheres, smaller positive andnegative changes
over large areas of the tropics, and decreases
over the Indian monsoon region. Amplitude de-
creases poleward of 60°S are another feature
that is common to the multimodel average and
observations (except UAH v6.0).
Poleward of 60°N, all satellite datasets have

substantial decreases in the amplitude of the
annual cycle of TMT. This decrease in TAC(x,t)
arises in part from greater warming in Arctic
winter than in Arctic summer. At the surface,
greater winter warming is primarily related to
differences in the seasonal timing of feedbacks
associated with sea ice retreat (35). The ice-
albedo feedback yields greater summertime
heat storage in the Arctic Ocean, which in turn
leads to increased wintertime sea ice retreat and
increased wintertime heat release from the ocean
to the polar atmosphere (35). This seasonality
in sea ice trends and ocean heat storage is ac-
companied by seasonal changes in cloud and
water vapor feedbacks and in ocean and at-
mospheric heat transport (35, 63, 87). All of these
processes affect not only surface temperature,
but also the vertical structure of tropospheric
temperature.
Although roughly one-third of the individual

models successfully capture the observed decrease
in TAC(x,t) over the Arctic, model-average TAC(x,t)
trends in this region are close to zero. This dis-
crepancy between satellite and model-average
Arctic TAC(x,t) trends may have a number of
different causes. One possible cause is that most
CMIP5 models underestimate observed Arctic
sea ice loss (35, 88, 89). The model average is
therefore likely to underestimate the observed
seasonal warming of the Arctic associated with
ocean heat storage and release, cloud and water
vapor feedbacks, and heat transport by the at-
mosphere and the ocean (35, 63, 87). Other pos-
sible causes of discrepancies between satellite
andmodel Arctic TAC(x,t) trends include model
representation of influences from outside the
Arctic (90, 91), model errors in the deposition of
aerosols on snow and sea ice (92), differences in
the phasing of internal variability in the real
world and in the HIST+8.5 simulations (93), and
the fact that synthetic microwave sounding unit
(MSU) temperatures do not account for surface

emissivity changes associated with sea ice retreat
in the HIST+8.5 runs (46).

Trends in zonal mean data

Calculating trends in zonally averaged data re-
duces the observed “pattern noise” in Fig. 2, A
to F, and highlights areas of large-scale agree-
ment and disagreement between simulations
and observations. In Fig. 3, we show trends in
zonal mean TAM(x,t) and TAC(x,t) for the strato-
sphere, mid- to upper troposphere, and lower
troposphere. This allows us to study the vertical
coherence of the TMT results from the previous
section.
Consider the annual mean results first (Fig. 3,

left column). Trends in zonal means are charac-
terized by hemispheric asymmetry, with greater
tropospheric warming (and smaller stratospheric
cooling) in the Northern Hemisphere than in the
Southern Hemisphere. These hemispheric asym-
metries in temperature change are evident in all
three atmospheric layers. They are common to
the models and satellite data, and are more pro-
nounced in the observations (38). In the tropics,
multimodel average trends in annual mean TMT
and TLT are always more positive than in the
observations, and themodel average overestima-
tion ofwarming extends throughout the Southern
Hemisphere. In contrast, most individual models
underestimate the observed Arctic amplification
of tropospheric warming (Fig. 3, C and E).
A prominent feature of observed trends in

zonal mean TAC(x,t) is mid-latitude “ridging” in
both hemispheres (Fig. 3, right column). In the
troposphere, these mid-latitude ridges represent
large increases in the annual cycle of temperature.
In the stratosphere, where there are decreases in
the zonal mean amplitude of the annual temper-
ature cycle at almost all latitudes, the observed
mid-latitude ridging signifies smaller amplitude
decreases. This ridging behavior is captured by the
multimodel average, but only for TMT and TLT.
Mid-latitude increases in the annual cycle are
larger in satellite data than in the multimodel
average. In the Northern Hemisphere, the ob-
served mid-latitude increase in annual cycle
amplitude is consistently displaced poleward
relative to the model results.
The trends in zonal mean TAC(x,t) also have

interesting features at high latitudes. All satellite
datasets exhibit large decreases in annual cycle
amplitude poleward of 60°N; decreases are evi-
dent in both the stratosphere and the tropo-
sphere. Model average changes poleward of
60°N are noticeably weaker, and there is sub-
stantial model disagreement in the sign and
size of trends. This holds for TLS, TMT, and
TLT. At high latitudes in the Southern Hemi-
sphere, however, most models yield a decrease
in the amplitude of the annual cycle of TMT,
consistent with most satellite datasets. This
common decrease in TAC(x,t) is not driven by the
same seasonal phasing of TMT changes (see
below).
It is of interest to compare older and newer

versions of satellite TMT datasets (Fig. 3). For
trends in zonal mean TAM(x,t), differences
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between the dataset versions of an individual
group are generally smaller than between-
group differences. This is not true for trends
in zonal mean TAC(x,t). Poleward of roughly
55°S, the amplitude of the annual cycle of
TMT decreases in the earlier version of the
UAH dataset (v5.6) but increases in the latest
version (v6.0). The trend difference between
UAH v5.6 and v6.0 appears to be related to
changes in how UAH analysts treated the
1998 transition between MSUs and advanced
MSUs. At this transition, the time series of
differences between UAH v5.6 and v6.0 ex-
hibits an abrupt change in the amplitude of
the seasonal cycle. Differences between earlier
and current versions of the RSS and STAR data-
sets do not show this apparent discontinuity. The
large changes in TAC(x,t) between the two UAH
dataset versions have important implications for
anthropogenic fingerprint detection (see below).

Seasonality of temperature changes

To gain insight into the seasonality of the tem-
perature changes driving the trends in the am-
plitude of the annual cycle,we analyze the trends
in zonal mean TMT over 1979 to 2016 as a func-
tion of month (Fig. 4). The multimodel average
trends are generally large relative to intermodel
differences in the trends, indicating that the sea-
sonal structure of the model TMT changes is ro-
bust over most latitude bands (except poleward
of ~60°S).
Consider first the prominent mid-latitude

increases in the annual cycle of tropospheric
temperature, which are common to both the
multimodel average and the satellite data (Fig.
3D). Although mid-latitude warming occurs
throughout the year, it is more pronounced
in the summer hemisphere, with a warming
minimum in the winter hemisphere (partic-
ularly at roughly 55°N in February). This sea-
sonality in tropospheric warming largely explains
the mid-latitude increases in TAC(x,t) in model
and satellite data. Qualitatively similar results
have been obtained elsewhere for uncorrected
TMT (62).
There are also some noticeable differences

between the simulated and observed seasonal
warming patterns in Fig. 4. In the tropics, the
satellite data show greater seasonality of warm-
ing. Poleward of 70°N, the pronounced observed
warming maximum between January through
March is absent from the multimodel average
(62). A further difference between the model
and observational trend patterns occurs between
roughly 30° and 45°N, where the satellite data
show awarmingmaximum from January through
March. This maximum is not reproduced by the
multimodel average. It is unclear whether such
small-scale differences are physically meaningful
or are purely due to the observational “pattern
noise” described above (62, 68).
Recall that poleward of 55°S, the amplitude

of the annual cycle of TMT decreased over the
satellite era in the multimodel average and in all
satellite datasets except UAH v6.0 (Fig. 3D). In
the latest versions of the RSS and STAR data, this

decrease is due to the phasing of maximum
cooling in December-January and maximum
warming in October-November. The multimodel
average captures part of the observed seasonal
phasing of TMT changes (reduced warming in
December-January) but has maximum warming
in June-August rather than inOctober-November.
Suchmismatches in phasingmay be partly due to
model errors in representing observed Antarctic
ozone changes (38, 65, 66). A model with more
realistic representation of the nonlinear temporal

evolution of stratospheric ozone changes (94)
yields better agreement with the observed sea-
sonal phasing of TMT trends over the Antarctic
continent (62).

Fingerprint analysis

We used a standard method to determine
whether the model fingerprints in response
to external forcing are statistically identifiable
in satellite tropospheric temperature data (1, 38).
Although we calculated fingerprints from both
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Fig. 2. Trends over 1979 to 2016 in the annual mean (left column) and annual cycle (right
column) of corrected TMT. Satellite TMTdata (A to F) and model TMTdata (G and H) are described in
Fig. 1. The stippling in (G) and (H) denotes grid points where the multimodel average trend in the
annual mean or annual cycle exceeds the between-model standard deviation of the trend by
at least a factor of 1.5. For the annual mean, tropical warming in UAH is noticeably reduced relative
to RSS and STAR. Results are displayed on a common 5° × 5° latitude/longitude grid.
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the ANTHROandHIST+8.5 simulations, we focus
here on the HIST+8.5 fingerprints (46). Whether
we use the ANTHROorHIST+8.5 fingerprints has
minimal influence on the main findings of our
study. The annual mean and annual cycle finger-
prints we seek, FAM(x) and FAC(x), are the leading
empirical orthogonal function (EOF) of the multi-
model average anomalies of the annualmean and
annual cycle of tropospheric temperature. Finger-
prints were calculated over 1979 to 2016 and are
shown in fig. S5, A and B.
An important assumption in our fingerprint

method is that these normalized fingerprint pat-
terns are time-invariant (31, 94). To test this
assumption, we analyzed trends in TAM(x,t) and
TAC(x,t) over four different 38-year periods. In

the annual mean case, a distinctive pattern of
tropospheric warming emerges as the size of net
anthropogenic forcing increases over time (fig.
S6, left column). Key features of this pattern are
maximumwarming in the tropics, greater warm-
ing in the Northern Hemisphere than in the
SouthernHemisphere, and localwarmingminima
in the vicinity of the Aleutian and Icelandic Lows.
Although the amplitude of this annual mean
warming pattern increases with increasing forc-
ing, the pattern itself is very similar in the final
three 38-year analysis periods.
The same holds for the spatial pattern of

trends in TAC(x,t) (fig. S6, right column). The
above-described “ridging” pattern, characterized
by pronounced mid-latitude increases in the

amplitude of the annual cycle, is established by
the second analysis period (1979 to 2016) and
remains relatively stable in the mid- to late 21st
century. The only major change in the pattern
of TMT trends is over the Antarctic continent,
where 21st-century changes in TAC(x,t) are likely
to be affected by recovery from stratospheric
ozone depletion (31, 94). Over most of the globe,
however, the “satellite era” fingerprints used
here are representative of the fingerprint patterns
that would be obtained with analysis periods
in the mid- or late 21st century.
We seek to determine (i) whether the pattern

similarity between the HIST+8.5 fingerprints and
satellite temperature data increases with time,
and (ii) whether such an increase is significant
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Fig. 3. Zonal mean
trends over 1979 to
2016 in the annual
mean (left column)
and annual cycle
(right column) of
simulated and
observed atmo-
spheric temperature.
Results are for the
temperature of the
lower stratosphere
(TLS) (A and B), the
corrected TMT (C and
D), and the tempera-
ture of the lower
troposphere (TLT)
(E and F). The thin gray
lines are the HIST+8.5
results from 37
different CMIP5
models. Where TMT
was available for
multiple HIST+8.5
realizations, ensemble
means are shown.
For the satellite
datasets, trends are
given for both older
and most recent
dataset versions
(dashed and solid
colored lines, respec-
tively). TLT is not avail-
able from STAR, and
RSS v4.0 data were not
available for TLS at the
time this study was
performed.
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relative to random changes in similarity be-
tween the fingerprint and patterns of natural
internal variability. To address these questions,
we compare the HIST+8.5 fingerprints with
temperature change patterns from the satellite
temperature datasets and from model control
runs. This comparison yields “signal” and “noise”
time series, respectively, which we use to cal-
culate S/N ratios (Fig. 5) (46). We stipulate that
fingerprint detection occurs at the trend length
LD for which the S/N ratio first exceeds a
nominal 1% significance threshold, and then re-
mains above that threshold for all trend lengths
L > LD.
We also show S/N results for calculations

that do not involve any observational data. Noise
time series are computed as described above. In
computing the signal time series, however, sat-
ellite data are replaced with time-varying tem-
perature changes in individual model HIST+8.5
simulations. These “model only” results help us

to assess whether the strength and time evolu-
tion of the fingerprint is similar in model and
satellite data.
It is of interest to determine whether identi-

fication of a model-predicted anthropogenic
fingerprint is primarily due to large global mean
temperature changes, with little contribution
from true spatial pattern similarity. To address
this issue, we performed S/N calculations with
and without the global mean. In the latter case,
the global mean change in temperature at each
time t is removed from all model and satellite
datasets prior to fingerprint estimation and S/N
analysis. We refer to these cases subsequently as
“mean included” and “mean removed.”
Consider the annual mean results first. In the

“mean included” case, themodelHIST+8.5 finger-
print is identifiable with high statistical confi-
dence in all six satellite datasets (Fig. 5A). Over
the 38-year satellite record, S/N ratios range
from 4.4 to 7.3, depending on the choice of

satellite dataset. The credibility of these S/N
ratios rests on the assumption that the model
control runs analyzed here provide reliable esti-
mates of the true (but uncertain) statistical prop-
erties of “real-world” natural internal variability
on 30- to 40-year time scales. The adequacy of
this assumption is difficult to assess with the
single available realization of the 38-year satellite
temperature record (85, 95, 96). On shorter time
scales for which meaningful variability tests are
possible (one to two decades), there is no evi-
dence that our S/N ratios are spuriously inflated
by a systematic model underestimate of the am-
plitude of observed TMT variability (see fig. S7).
For trends longer than roughly 25 years, model

S/N ratios are systematically larger than S/N ratios
calculated with annual mean satellite TMT data.
These longer trends sample temperature changes
in the early 21st century, when the HIST+8.5 sim-
ulations have known deficiencies in their repre-
sentation of certain external cooling influences.
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Fig. 4. Zonal mean
trends over 1979
to 2016 in monthly
averages of
corrected TMT.
Results are for the
latest versions of the
RSS, STAR, and UAH
satellite datasets
[(A to C), respectively]
and for the multimodel
average of the
CMIP5 HIST+8.5
simulations (D). The
plus symbols in
(D) indicate multimodel
average trends that
exceed the between-
model standard devia-
tion of the zonal-mean
monthly mean trend
by at least a factor of
1.5. As in Fig. 3, all
satellite and model
temperature data
were transformed to
a common 5° × 5°
latitude/longitude grid
prior to zonal averaging.
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Examples include omission of the post-2000 cool-
ing caused by a succession of moderate volcanic
eruptions (80, 81, 83, 84, 97–99) and by the un-
usually long and lowminimum in solar irradiance
during the last solar cycle (100).
The early 21st centurywas also a period during

which the real world experienced internally gen-
erated cooling influences. These were due to the
post-1998 transition to a negative phase of the
IPO and to the fortuitous phasing of othermodes
of natural variability (72–77). Coupled models
have random sequences of internal variability
and are not expected to replicate the observed

phasing of internally generated temperature
fluctuations, except by chance.
When global mean changes are removed,

“model only” S/N ratios are not systematically
larger than observationally based S/N results.
The HIST+8.5 fingerprint of annual mean TMT
changes is still consistently identifiable in all
satellite datasets (Fig. 5B). S/N ratios range from
2.3 to 6.4 for calculations spanning the full sat-
ellite record. These values are smaller than in the
“mean included” case but are still above the 1%
significance threshold. This demonstrates that
successful detection of the HIST+8.5 fingerprint

in observations is not driven by global mean
changes alone: The large S/N ratios in the “mean
included” case carry appreciable spatial pattern
information, such as common hemispheric asym-
metry in warming (see Figs. 2 and 3C).
S/N ratios for the annual cycle do not differ

markedly between the “mean included” and the
“mean removed” cases (Fig. 5, C and D). This is
because global mean changes in TAC(x,t) are rel-
atively small. Most of the signal is in the zonal
mean pattern of amplitude changes (Fig. 3D).
The HIST+8.5 annual cycle fingerprint is iden-
tifiable in five out of six satellite datasets,
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Fig. 5. Signal-to-
noise (S/N) analysis
of changes in the
geographical
patterns of
corrected TMT.
Results are for
patterns of change in
the annual mean
(A and B) and annual
cycle (C and D) of
TMT.The analysis was
performed on a 10° ×
10° latitude/longitude
grid; the latitudinal
extent of the domain
was from 80°N to
80°S. Results in (A)
and (C) rely on model
and satellite temper-
ature datasets that
include hT(t)i, the
spatially averaged
temperature in year
t. In (B) and (D), hT(t)i
was subtracted from
all HIST+8.5 simula-
tions, control runs,
and satellite datasets
prior to S/N analysis.
The searched-for
annual mean and
annual cycle finger-
prints, FAM(x) and
FAC(x), are estimated
from the multimodel
average annual mean
and annual cycle
results. FAM(x) and
FAC(x) are time-
invariant. A pattern
similarity metric is
applied to estimate
the strength of each
fingerprint in time-varying satellite datasets and in long model simulations of
natural internal variability.This yields “signal” and “noise” time series,
respectively (46). For each satellite dataset, we fit L-year trends to the signal
time series to obtain the numerator of the S/N ratio.The first signal trend is
over the 10-year period from 1979 to 1988, the second is over the 11-year
period from 1979 to 1989, and the final 38-year signal trend is over the full
satellite record (1979 to 2016).The denominator of the S/N ratio is the
standard deviation of the multimodel sampling distribution of L-year noise

trends, calculated using 7200 years of temperature data from 36 CMIP5
control runs.The time scale of the noise trends matches the time scale of the
signal: Signal trends over 1979 to 1988 are compared with the standard
deviation of the sampling distribution of 10-year noise trends, etc. “Model only”
results also shown (the 37 thin gray lines in each panel).The “model only”
signal time series are calculated by comparing individual model HIST+8.5
simulations with the multimodel average AM and AC fingerprints.The
horizontal purple line is the nominal 1% significance level.
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irrespective of whether global mean changes
are retained or removed. In these five datasets,
S/N ratios for the 38-year satellite record vary
from 2.7 to 5.8 for the “mean included” case, and
from 3.3 to 5.8 for “mean removed” data. The
only dataset in which FAC(x) cannot be detected
is UAH v6.0. Recall that poleward of 55°S, UAH
v6.0 has zonal mean TAC(x,t) trends of opposite
sign to trends in all other satellite datasets and
in the multimodel average (Fig. 3D). This dis-
crepancy must contribute to the null result ob-
tained with the UAH v6.0 data.
There are concerns regarding how well sat-

ellite TMT data represent true tropospheric
temperature change in high-latitude regions
experiencing a substantial decrease in sea ice
extent (101). To address these concerns, we
repeated our “standard” S/N analysis of cor-
rected TMT, which was performed over 80°N
to 80°S, for a 60°N to 60°S domain. S/N ratios
are similar for the larger and smaller regions
(compare Fig. 5 and fig. S8). This indicates that
exclusion of areas with large changes in sea ice
extent has minimal impact on our findings.
Why do we obtain detection of the HIST+8.5

fingerprints for both the annual mean and an-
nual cycle of TMT? Comparison of the finger-
prints with the leadingmodes of natural internal
variability helps to address this question (fig. S5).
In the annual mean case, FAM(x) is characterized
by large-scale, hemispherically asymmetric tro-
pospheric warming. In contrast, the dominant
modes of variability in annual mean TMT do not
have the same sign everywhere, are smaller in
scale, and exhibit anticorrelated variability be-
tween different broad zonal bands (and between
Eurasia and North America). Patterns of annual
mean trends in satellite TMT data are more
similar to FAM(x) than to the leading noise modes
(compare Fig. 2, A, C, and E, and fig. S5).
Because of these pattern differences and sim-

ilarities, the fingerprint acts as a filter, removing
internal variability that is spatially dissimilar to
FAM(x) while “passing” observed TMT changes.
The same applies in the annual cycle case. The
pronounced zonal structure of FAC(x) captures
many features of the observed annual cycle
changes, but differs markedly from the smaller-
scale (and less zonal) variability patterns esti-
mated from the control runs.
We performed a similar S/N analysis for the

lower troposphere (fig. S9). Annual mean TLT
results are consistent with those obtained for
TMT: FAM(x) is robustly identifiable in all versions
of the RSS and UAH annual mean TLT data, in
both the “mean included” and “mean removed”
cases. For the annual cycle, however, the TLT
results are markedly different. Although FAC(x)
was identifiable in five out of six observed TMT
datasets, it could not be detected in any of the
satellite TLT datasets. Reasons for this discrep-
ancy are discussed below.

Discussion

Mid-latitude increases in the amplitude of the
annual cycle of TMT are prominent features of
both the satellite observations and the HIST+8.5

simulations (Fig. 3D). What physical mechanisms
might explain these features? Specifically, we seek
to understand why the mid-latitude increase in
TAC(x,t) is larger in the Northern than in the
SouthernHemisphere, andwhymid-latitude tro-
pospheric warming is greater in the summer
hemisphere. We address these questions using
zonal mean surface temperature changes in the
HIST+8.5 simulations.We analyze these changes
over the climatological seasonal cycle and over
the period 1979 to 2016.
Consider the seasonal cycle first. At mid-

latitudes, the seasonal cycle is larger in the
Northern than in the Southern Hemisphere
(fig. S10A). This asymmetry arises for two rea-
sons: (i) Land has smaller effective heat ca-
pacity than ocean, and therefore warms more
than ocean in response to spring-to-summer
insolation changes, and cools more in fall-to-
winter; and (ii) the mid-latitude land fraction
is larger in the Northern than in the Southern
Hemisphere. Because of advection of heat fluxes
between mid-latitude land and ocean, hemi-
spheric asymmetry is not restricted to the com-
bined “land and ocean” zonal means; it is also
manifest in zonal mean surface temperatures
calculated using land and ocean grid points only
(fig. S10, C and E, respectively).
Land-ocean differences in heat capacity and

hemispheric differences in land fraction also
influence the long-term surface temperature
response to anthropogenic forcing. Zonal mean
surface temperature trends over the satellite era
show pronounced hemispheric asymmetry, with
greater mid-latitude warming in the Northern
than in the Southern Hemisphere (fig. S10, B, D,
and F). The maximummid-latitude surface warm-
ing occurs in the summer hemisphere, par-
ticularly in boreal summer in the “land only”
zonal averages (fig. S10D).
One possible explanation for the latter result is

progressive summertime drying of the mid-
latitude continental land surface in response
to anthropogenic greenhouse gas increases
(102, 103). This drying yields an increase in
sensible heat flux from the land surface to the
atmosphere (102). Recent research suggests that
in boreal summer, the mid-latitude continental
drying signal predicted by CMIP5 models is
statistically identifiable in observed soil moisture
and near-surface relative humidity datasets (104).
There are, however, still substantial uncertainties
in this drying and warming signal. These un-
certainties are partly related to model biases in
summertime land surface temperature (105).
The same basic physical mechanisms drive

hemispheric asymmetry in the latitude-height
structure of tropospheric temperature changes
(fig. S11). This holds for temperature changes
over the climatological seasonal cycle and for
temperature trends over the satellite era. To
highlight hemispheric asymmetries, we show
differences between August and February—the
months during which the warmest tropical tro-
pospheric temperatures are furthest northward
in boreal summer and furthest southward in
austral summer (fig. S12).

Consider the seasonal cycle first (fig. S11A).
Below roughly 200 hPa, the August-minus-
February tropospheric temperature differen-
ces at mid-latitudes are markedly larger in the
Northern than in the Southern Hemisphere. The
August-minus-February tropospheric temperature
trend differences exhibit similar asymmetry and
amplify with increasing height, consistent with
a moist adiabatic lapse rate (106, 107) (fig. S11B).
The maximum trend differences are at roughly
200 hPa and at 40°N and 40°S. These features
are qualitatively similar to the latitude-height
pattern of changes in the amplitude of the an-
nual cycle in response to CO2 doubling (42).
We turn next to the question of why we can

detect the anthropogenic FAC(x) fingerprint in
TMT but not in TLT. Because of amplification
by moist thermodynamic processes (69, 70, 106),
the greenhouse gas–forced signal in TAC(x,t)
should be larger in corrected TMT than in TLT
(42). This is in fact the case. In the HIST+8.5
simulations, the fingerprint FAC(x) explains 37%
of the overall space-time variance of the multi-
model average TMT changes. For TLT, the
variance explained by FAC(x) is substantially
smaller (22%; fig. S13A). It is this larger signal
in TMT that explains the differences between
signal detection results for TMT and TLT. Dif-
ferences in noise do not appear to play a major
role—the partitioning of internally generated
variability as a function of EOF number is sim-
ilar for TMT and TLT (fig. S13B).
The basic physical processes described above

are unlikely to be the only drivers of the pattern and
amplitude of the annual cycle changes in Fig. 3D.
Over the Antarctic continent, stratospheric
and tropospheric cooling arising from human-
caused ozone changes can exert seasonal in-
fluence on high- and mid-latitude Southern
Hemisphere atmospheric circulation and tem-
perature (62, 108, 109). This influence occurs
primarily via the Southern Annular Mode (SAM)
(110) but may also operate through more com-
plex interactions among ozone loss, planetary
wave activity, and seasonal tropospheric circu-
lation (108). Greenhouse gas forcing also induces
SAM responses, which are expected to strengthen
over the 21st century (111).
A number of previous studies have reported that

the tropics are expanding poleward (109, 112–115).
This is in accord with basic theory linking global
warming to increases in static stability and to a
poleward shift in the latitude of baroclinic in-
stability (116). Tropical expansion in response to
warming is alsomanifest in satellite observations
of tropospheric temperature change (112, 114)
and in a wide range of simulations performed
with models of varying complexity (107, 117).
Expectations of temperature changes arising
from tropical expansion, derived from theory,
models, andobservations (107, 109, 112, 114, 116, 117),
appear to be consistent with the mid-latitude
TAC(x,t) changes in Fig. 3D. Further work is re-
quired to understand and quantify the con-
tributions to these TAC(x,t) changes from
tropical expansion and the physical mech-
anisms described here.
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Recently, it has been claimed that climate
scientists cannot reliably quantify human and
natural contributions to global warming (118, 119).
Such claims are not supported either by the pres-
ent work or by related climate change detection
and attribution studies (4–8, 11, 21, 22, 38). We
find here that for annual mean TMT, the esti-
mated S/N ratios exceed 4.4 for temperature
changes over the 38-year satellite record. This
translates to odds of roughly 5 in 1 million of
obtaining the annual mean S/N ratios by natural
variability alone. To negate the positive detection
of an anthropogenic fingerprint in satellite
TAM(x,t) datasets, themodel-based estimates of
natural variability used here to calculate S/N
ratios would have to underestimate real-world
low-frequency variability by a factor of 2 ormore.
For tropospheric temperature, there is no evi-
dence that an error of this magnitude exists. On
average, CMIP5 models appear to overestimate
the observed natural variability of TMT on
decadal time scales (38).
Across the most recent versions of observa-

tional TMT datasets, structural uncertainty in
the geographical pattern of trends appears to
be smaller for annual cycle amplitude than for
the annual mean (Fig. 2, A to F). This is ad-
vantageous for detection and attribution studies.
Furthermore, we note that the annual cycle of
tropospheric temperature is not routinely used
in model evaluation. It is highly unlikely, there-
fore, that the positive fingerprint identification
results obtained here for the annual cycle could
be due to model tuning. The best explanation for
these results is that basic physics and basic
physical mechanisms are driving the large-scale
changes in TAC(x,t). For tropospheric temper-
ature, a human-caused signal is now evident in
the seasonal cycle itself.
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